skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Virk, Sabitoj Singh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work, we analyzed an isotropic colloidal model incorporating both short-range sticky attractions and long-range electrostatic repulsions. We computed the zero-shear viscosity and second virial coefficient for a dilute colloidal suspension (i.e., pair interactions only) as a function of the strength of attractions and repulsions. We also developed an analytical approximation that allows us to better understand the coupling of the two types of interactions. The attractions and repulsions contribute to the zero-shear viscosity and second virial coefficient in different ways, leading to cases with the same second virial coefficient but different zero-shear viscosity. The analytical approximation shows that the mechanism of the coupling of interactions is that long-range repulsions can weaken the influence of short-range attractions. This effect alters how repulsions change the zero-shear viscosity. Acting independently, both attractions and repulsions increase the viscosity coefficient of the system. However, when both types of interactions are considered together, repulsions can screen the effect of attractive interactions, thereby reducing the viscosity. 
    more » « less